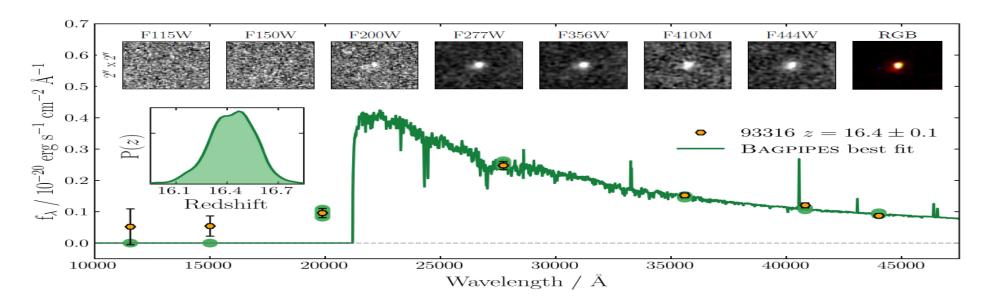
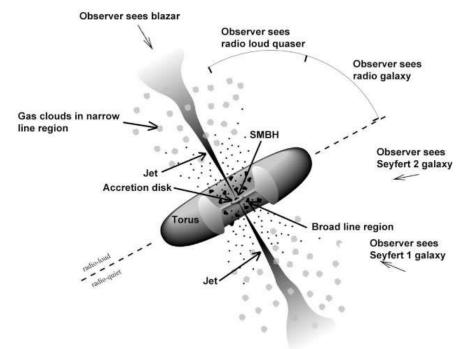
Coevolution of Black Holes and Host Galaxies At High Redshift


Preview:

- 1. BHs, AGN, and related objects in host galaxies
- 2. Co-evolution empirical relations: $M_{
 m BH}/M_{
 m bulge}$ $M_{
 m BH}-M_{
 m halo}$ $M_{
 m BH}-\sigma$
- 3. Lauer Bias
- 4. Feedbacks in galaxy evolutions

Introduction – High redshift galaxies


- Much attention has focused on attempting to measure the star-formation histories at highredshift galaxies using new telescopes such as JWST.
- Finding and confirming such dim, dark, early-type and young galaxies is extremely hard.
- The largest redshifts of galaxies observed so far:

z~8.5 (spec; Carnall et al. 2023), z~16.4 (photo, see below; Donnan et al. 2022)

Introduction – AGN, SMBH, and Host galaxy

- <u>Active Galactic Nuclei</u> (AGN) are the dense regions at the galactic center.
- For each bulge-galaxy, AGN has a <u>super-massive</u> <u>black hole (SMBH; $> 10^5~M_{\odot}$)</u>
- Correlations between SMBH's mass and their host galaxy properties (e.g. bulge mass, luminosity, velocity dispersion) have been found over decades.

Credit: Fermi Gamma-ray Space Telescope

Introduction – High redshift galaxies

- To study the correlation changes as redshift goes, we explore the black hole and host galaxy's evolutions.
- Evolution tracers:
 - SMBH mass
 - Bulge/Halo/Stellar masses
 - Velocity dispersion
 - Bulge/host luminosities

•

Who forms first?

- 1. SMBH:
 - a) Seeds: Population III stars (oldest, very early stars) or direct halo gas.
 - b) Relatively, portion of BH's mass $M_{\rm BH}$ decreases to the local value (present value) as it evolves with the host
- 2. Not SMBH: Halo gas with angular momentum could not fall into the center.
- At low redshift (local), SMBH only counts for about few 0.1% mass of the host (galaxy) bulge.

Credit: Stefan Payne-Wardenaar

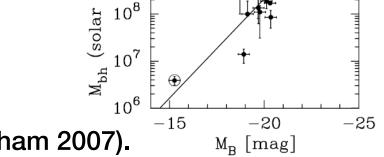
Possible co-evolution tracer (as a function of z)? $M_{ m BH}/M_{ m bulge}$ Relation

- $M_{
 m BH}/M_{
 m bulge}$ Relation:
 - $M_{\rm BH}/M_{\rm bulge} \sim 10^{-2.31} \,$ for local (Kormendy & Ho 2013)
- $M_{
 m BH}-M_{
 m halo}$ Relation
- $M_{
 m BH}-\sigma$ (velocity dispersion) Relation

Credit: Stefan Payne-Wardenaar

Problem on $M_{ m BH}/M_{ m bulge}$ Relation: Lauer Selection Bias

- Expectation: "the high-z galaxy expect a larger $M_{
 m BH}/M_{
 m bulge}$?"
 - Quasars at $z \sim 6$: $> 10^{-1.9}$ to $10^{-1.5}$ (Wang et al. 2013)
 - $z \sim 4 7$: $> 10^{-2}$ (Venemans et al. 2012)
- Lauer et al. (2007) argued there might be due to a selection effect:


Low-mass galaxies with SMBHs (high ratio) are more likely to be found than high-mass galaxies with typical BHs (low ratio).

Credit: Stefan Payne-Wardenaar

Problem on $M_{ m BH}/M_{ m bulge}$ Relation: Lauer Selection Bias

- This could be explained from two perspectives:
 - 1) $M_{
 m BH}-L$ relation's slope uncertainty

•
$$\log\left(\frac{M_{
m BH}}{M_{\odot}}\right) = -0.42(\pm 0.06)(B+20.0) + 8.32(\pm 0.10)$$
 (Graham 2007).

Graham 2007

masses)

- Luminosity L can be inferred from B-band magnitude B. Larger B, larger error $M_{\rm BH}$.
- 2) Schechter (1976) Luminosity Function (a Prob. Distri.)

$$\phi(L)dL = \phi^* \left(L/L^*\right)^{-\alpha} e^{-L/L^*} \frac{dL}{L^*}$$

- Number density of galaxies is falling off rapidly with L,
- Population of high-L galaxy blackholes were missed (Lauer et al. 2007).

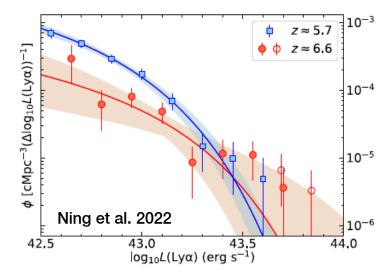
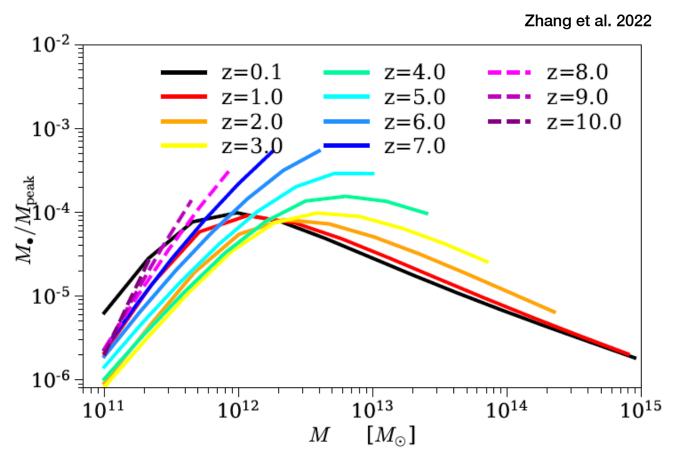
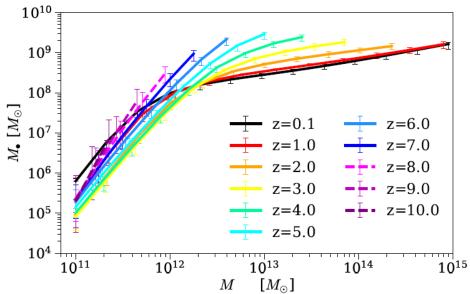




Figure 14. The Ly α LFs at $z \approx 5.7$ (blue, from Z22) and $z \approx 6.6$ (red, this work), which are both obtained by our spectroscopic survey. The lines represent the best-fit Schechter functions, while the corresponding colored shades cover the 1σ regions of the fitting.

Problem on $M_{\rm BH}/M_{\rm bulge}$ Relation: Lauer Selection Bias

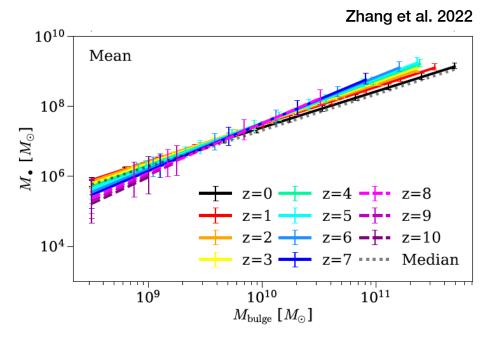
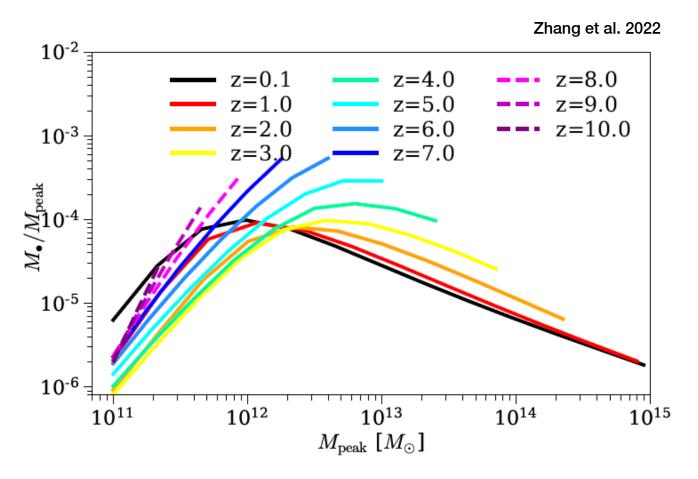


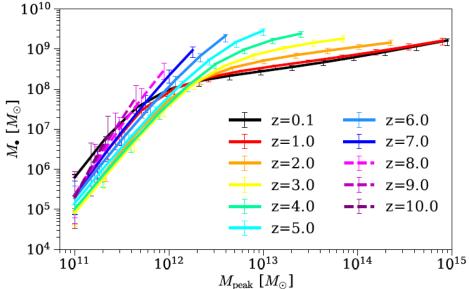
Figure 14. Top Panel: the best-fitting median $M_{\bullet}-M_{\rm peak}$ (peak halo mass) relation from z=0-10 (see §4.2). **Bottom Panel:** the best-fitting $M_{\bullet}/M_{\rm peak}$ ratios as a function of $M_{\rm peak}$ and z. The error bars show the 68% confidence intervals inferred from the model posterior distribution. The scaling relations at $z \ge 8$ are shown in dashed lines, which remain to be verified by future observations (by, e.g., JWST). All the data used to make this plot can be found here.

• When selecting sample with large $M_{
m BH}$, we are more likely to observe low-mass galaxies.

Problem on $M_{\rm BH}/M_{\rm bulge}$ Relation: No redshift dependence!

• No significant redshift dependence in $M_{
m BH}/M_{
m bulge}$. Not a tracer! (e.g. Zhang et al. 2022)




Figure 12. The evolution of the mean M_{\bullet} – M_{bulge} relation from z = 0 - 10 (see §4.2). The grey dotted line shows the median relation at z = 0 for comparison. The error bars show the 68% confidence intervals inferred from the model posterior distribution. The scaling relations at $z \ge 8$ are shown in dashed lines, which remain to be verified by future observations (by, e.g., JWST). All the data used to make this plot can be found here.

Local SMBHs are also unlikely to grow with their host galaxies' masses but correlate with halo mass.
 (Powell et al. 2022)

Other co-evolution tracers

- $M_{
 m BH}-M_{
 m halo}$: BH to peak halo mass (as a function of z).
- $M_{
 m BH}-\sigma$: BH to velocity dispersion (as a function of z).

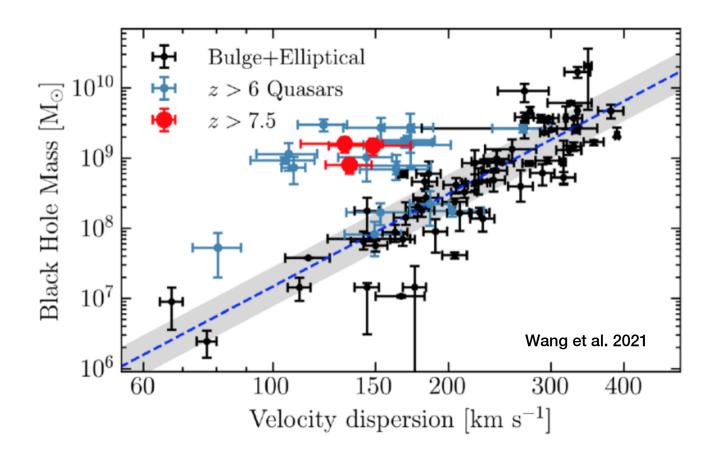
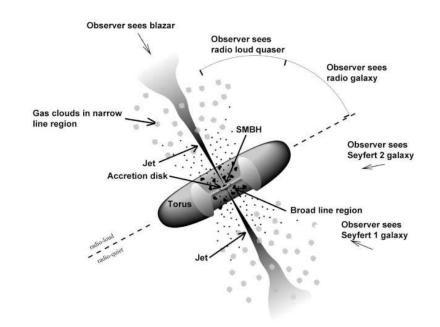


Figure 14. Top Panel: the best-fitting median M_{\bullet} – $M_{\rm peak}$ (peak halo mass) relation from z = 0 - 10 (see §4.2). **Bottom Panel:** the best-fitting $M_{\bullet}/M_{\rm peak}$ ratios as a function of $M_{\rm peak}$ and z. The error bars show the 68% confidence intervals inferred from the model posterior distribution. The scaling relations at $z \ge 8$ are shown in dashed lines, which remain to be verified by future observations (by, e.g., JWST). All the data used to make this plot can be found here.


Other co-evolution tracers

- $M_{
 m BH}-M_{
 m halo}$: BH to peak halo mass (as a function of z).
- $M_{\rm BH}-\sigma$: BH to velocity dispersion (as a function of z).

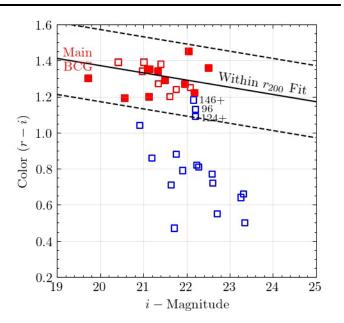
AGN Feedbacks in galaxy evolution

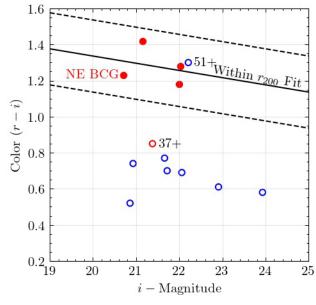
- AGN Feedbacks between SMBHs and hosts provide opportunities to build correlations.
- Two modes of AGN feedback modes:
 - 1. Quasar mode
 - Gas flows in, high accreting rate
 - 2. Radio mode
 - Slow accreting rate
 - Heat intra-cluster gas surrounding AGN to a high that shutdown halo cooling processes (LF at bright end) and star-formation, i.e. quenching.
 - Result a negative feedback.
- Other negative feedbacks: surrounding starburst winds (quenching)
- Any positive feedback? Yes!
 - Molecular outflow compress dense gas clouds into cocoons (shell-like regions) reaching Jeans and enough clumps that satisfies collapse.

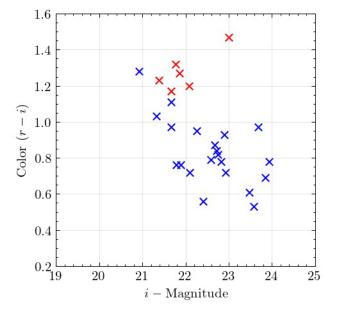
Credit: Fermi Gamma-ray Space Telescope

Co-evolution between SMBHs and their hosts are still under discussions while measurements on BH-halo or BH- σ relations at high redshifts are more available.

Mechanisms such as AGN negative wind-like and positive outflow feedbacks are self-regulating processes for star-formation and galaxy evolution.


References


- Carnall A. C., Begley R., McLeod D. J., Hamadouche M. L., Donnan C. T., McLure R. J., Dunlop J. S., et al., 2023, MNRAS, 518, L45
- Donnan C. T., McLeod D. J., Dunlop J. S., McLure R. J., Carnall A. C., Begley R., Cullen F., et al., 2022, arXiv, arXiv:2207.12356
- Graham A. W., 2007, MNRAS, 379, 711
- Lauer T. R., Tremaine S., Richstone D., Faber S. M., 2007, ApJ, 670, 249
- Marshall M. A., Mutch S. J., Qin Y., Poole G. B., Wyithe J. S. B., 2020, MNRAS, 494, 2747
- Ning Y., Jiang L., Zheng Z.-Y., Wu J., 2022, ApJ, 926, 230
- Powell M. C., Allen S. W., Caglar T., Cappelluti N., Harrison F., Irving B. E., Koss M. J., et al., 2022, ApJ, 938, 77
- Silk J., Di Cintio A., Dvorkin I., 2014, nhoc.conf, 186, 137. doi:10.3254/978-1-61499-476-3-137
- Veilleux S., Meléndez M., Sturm E., Gracia-Carpio J., Fischer J., González-Alfonso E., Contursi A., et al., 2013, ApJ, 776, 27
- Wang F., Yang J., Fan X., Hennawi J., Barth A., Exploring Reionization-era Quasars Team, 2021, AAS
- Zhang H., Behroozi P., Volonteri M., Silk J., Fan X., Hopkins P. F., Yang J., et al., 2022, MNRAS.tmp. doi:10.1093/mnras/stac2633


Appendix 1: Quenching and Color-Magnitude Diagram

ISM molecular powerful outflows may be the long-sought "smoking-gun" of quasar mechanical feedback that clears out the molecular disk formed from dissipative collapse during the merger. (Veilleux et al. 2013)

This turns out that the blue star-forming galaxies suddenly jump from blue cloud across green valley into red sequence, as shown in Color-Magnitude Diagram.

- Main: Red galaxies (8)
- Main: Red within r_{200} (12)
- Main: Blue galaxies (17)
- Main: Blue within r_{200} (0)
- NE: Red galaxies (1)
- NE: Red within r_{200} (4)
- o NE: Blue galaxies (8)
- NE: Blue within r_{200} (0)
- × Range 3: Red galaxies (6)
- × Range 3: Blue galaxies (21)

Di et al. In-prep.