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Preview:
1. G-P Optical Depth: A uniform neutral hydrogen assumption

2. Interpretations on low-z (z=2.01) hydrogen composition (HI or Hll)



Introduction - Quasars

Active Galactic Nucleus (AGN)

Super Massive BlackHole

The gas falling towards the quasar
releases electromagnetic radiation.

In 1965, the most distant quasar 3C 9 was

only at redshift z=2.01.

Credits: Vanden Berk et al., 2001, AJ, 122, 549
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Fig. 3.— Composite quasar spectrum using median combining. Power-law fits to the estimated

continuum fux are shown. The resolution of the input spectra is = 1800, which gives a wavelength

resolution of about 1A in the rest frame.



Introduction - QSO’s Spectrum

« Active Galactic Nucleus (AGN)
* Super Massive BlackHole

« The gas falling towards the quasar

releases electromagnetic radiation. 100 e I)‘O‘Zl 1|216|A|| S
* In 1965, the most distant quasar 3C 9 was 80 [ I _ ["‘ —H
BoF 3C 273 z=0.158 I a
only at redshift z=2.01. g 00¢ /\ :
The HI (neutral hyd ions al g ] ;
e Hl (neutral hydrogen) regions along = P .] ﬁl | Wlmmmﬂﬁmﬂ.r "’m,.,w.,«ﬂr,...,rﬂ:
the light-of-sight can show absorption =N SRR NN NS NN NS NN
1000 1050 1100 1150 1200 1250 1300 1350
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spectrum.

* Notice the wings and depths of the O O
absorption lines. %M?{O Q WQ

Credits: Bahcall et al., 1991, ApJL, 377, L5; E. Wright (UCLA)
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Main Goals of Gunn&Peterson (1965) 2~ Rl

1.

Study a fate of photons emitted to the blue of Lyc.

. Assume a uniform HI gas in IGM to calculate an optical depth as a function of redshift.

Compare the number density of HI gas derived from the observation of 3C 9 with other works.

Analyze an interpretation of at 3C 9 and support based on models and

assumptions.
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GP Optlcal Depth i‘“ Uniform HI Regions ﬁg

(neutral hydrogen)

A L |

Again, Gunn and Peterson (1965) assumed a uniformly distributed HI (neutral hydrogen)
gas at the density of nyr(2) in IGM at redshift 2. Do not confuse this redshift of regions
absorbing HI, z, with the quasar’s redshift z.,. e.g.. 2 < 2z, = 2.01 for 3C 9. The optical

depth is defined as
d7(2) = nu1(2) o(vs(z)) di(2), (13)

where v,(2) is the frequency of the absorption scattering. with respect to the scattering plane
at redshift 2. This can be implied from the observed frequency v by v4(2) = v(1 + z). The
dl(z) and o(r(2)) terms are read as the tiny length along the line-of-sight and cross-section

of radiative excitation for Ly« transition respectively.
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GP Optical Depth P R R

A L |

Since we have integrated absorption coefficient (See Class Note 16), we can introduce an
additional normalized and strongly peaked function ¢(v — 1, ) at v, = ¢/ 1216A and rewrite

the cross-section
)
me” faq

o(v) = 20— ), (14
MeC

is the oscillator strength of Lya transition.

Using the scale relation and Hubble parameter at z, H(z) simply rewrite d/(2) terms into

-1
dl(z) = (dl) dz = cHz) dz. (15)
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GP Optical Depth P R R

A L |

Now. taking nui(z) = nui(1 + 2)? and plugging above equations into the optical depth

integrant, we get

“ : ;?20. .HZ:_l n?gf_- :
) = /0 dr(z) = /0 [nH[(l + :)37;;£ g(v — I/Q)C ] Er): } dz = nH[i;; Mo H(2)7t
(16)

2

7(

From a more intuitive perspective,

o k2N 1+ 2\""* /nm
z - . - [ 9} —_I_ _2—ng oo . R Mard
7(2) = 1.8 x 10°h~—" Q) (0.02) ( - ) - (17)

Credits: Fan et al. 2006, AJ, 132, 117



GP Optical Depth
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« Uniform HI Regions [:J
i (neutral hydrogen)
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FiG. 2.—Evolution of transmitted flux ratio and effective Gunn-Peterson optical depth as functions of redshift. The solid line is the expected evolution if
the number density of Lyx clouds increases as N(z) oc (1 + z)*°. No flux is detected in the spectrum of SDSS 1030+ 0524 at z,,. ~ 6, indicating t;; > 5.0. The
nondetection of flux in the Lyp trough gives a substantially stronger 1 ¢ upper limit of 7, > 20.

Credits: Becker et al., 2001, AJ, 122, 2850
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HI Density from Quasar 3C 9 £- e oo ﬁ@

(neutral hydrogen)

A )

The blueward flux of 3C 9 (z=2.01) component and the wing of the line are noticeably depressed about 40%.

It corresponds to an optical depth of about 7(z = 2.01) = 3.

Field (1962) derived a pu1 ~ 1072% g cm—3 from the 21cm hydrogen observation.

For the ¢, = 0.5, Q,,, = 1 model,
« The mass density of neutral hydrogen is par = 1 x 1073* g cm ™2, Much smaller than Field (1962).

« The total density is piotal =5 x 10728 gcm ™3 .

* Thus, only about Oy1(2 = 2.01) := pui/piaia =|2 x 10~7 Jof the total mass at that time could have been in the

form of intergalactic neutral hydrogen.

For the steady-state model ({2, = 1, creation of matter),

e pgr =2 x1073% gem™3,

- Constant total density is 4 x 10729 g cm ™3,

- the factor here is somewhat less about Qp;(z = 2.01) =|5 x 1077 |.
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HI Density from Quasar 3C 9 - Outcomes £ outral hychogen) ﬁ@
A O Q )
Interpretation: gD “‘O@%@
& &)
Either Scattered, low density HI Regions

« the cosmological ideas (in 1960s) are grossly incorrect,
» that space is very nearly empty.
Or,

- the matter (all hydrogen contents) exists in some other form.

It is possible that this interpretation is still but requires

If the universe was uniformly neutral at z~2, then HI should strongly absorb the flux.
Hence, the hydrogen gas must be so that the flux at wavelengths can go through.

This can be defended if we are allowed to make the intergalactic electron temperature is high enough.
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« Uniform HI Regions
More on i (neutral hydrogen) ﬁg
& O
« Mechanism of reionization: iw\’}?@ O W@
 Recombination requires a mean time of reionization: Scattered, low density HI Regions

500 years per hydrogen atom.
- Collisional reionization: Inadequate (mean lifetime ~ 10* years)
- Radiative reionization: need a mean intensity ~ 1.2 x 10%2° erg cm™2 (c¢/s)™! sec™! ster—!.
 Normal galaxies, Radiogalaxies: too low, ~10% from quasars
* Quasars
 IGM itself: more promising if 7 =2 x 10° K at z = 2.

» lonization is more collisionally-dominant as 7' goes higher.



A Sidenote - Lya Forest

« Atlow 2z, HI (neutral hydrogen) is ionized into HIl (ionized hydrogen).

« Atlow z, only small portion of spectrum is absorbed by light-of-sight scattered HI regions.

Ly«

HI Regions (neutral hydrogen)
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Credits: E. Wright (UCLA); Bahcall et al., 1991, ApJL, 377, L5
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A Sidenote - Gunn-Peterson Trough

First Stars and Reionization Era

« Early Universe (high-z, “dark”): Redshift [ . Tho i Bany/nation
Big Bang (years) Universe filled with
. ionized gas:
« Dense HI region ~1100 B full opaque

Universe becomes
neutral and transparent

« High optical depth

« Late Universe (low-2): _
HI Regions —
* Reionization

Epoch of Reionization

* Hlregion is less dense .

* Higher transparency

Tha W o B % .. +®xs .1 Reionization complete
1 L > gL ~ 10% opacity
HI Regions ek
H” R g . — iy e i : Galaxies evolve
[o]g : o .
Spectroscopic survey of Lya emitting galaxies in QSO fields z>6 eg ons 1 Dark Energy begins

to accelerate the

o N * ; ' ' expansion of space
% i
Galaxy spectra \ , * © w Oy % - . > QOur Solar System
< w QSO : forms
QSO absorption spectra / \ /\ / \ R /\ % A R ; y
o . ™ \

N

; %* *
Lya halo * * . <t * x ¥
o e
Post-reionized IGM x HI / Hil 10) 0 ~ 13.7 Billion -
o

(@]
small-scale absorbers

Credits: Koki Kakiichi (UCL); NASA/WMAP

Today: Astronomers look back and understand
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GP Optical Depth vs. HI Density at High-z P R R
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Fic. 9.— Comparison of the evolution of observed GP optical depth with
simulations. Data points are the same as in Fig. 5. The dotted line 1s the power-law
i fit to the optical depth evolution at z < 5.5: 7gp oc (1 2)4'3. The solid line with
o S S R S SR S S | error bars 1s the result from simulations of Paschos & Norman (2005), which have

5 5.5 6 6.5 Zreion ~ 7. The dashed and dot-dashed lines are the 4 and 8 Mpc simulations of
Gnedin (2004), respectively, which have z,, ~ 6.5. The data points fall be-
abs tween the two simulations but are somewhat closer to those of Gnedin.

Credits: Fan et al. 2006, AJ, 132, 117



A Sidenote - Lya Forest

« Atlow z, HI (neutral hydrogen) is ionized into HIl (ionized hydrogen).
« Atlow z, only small portion of spectrum is absorbed by light-of-sight scattered HI regions.
 As more HI regions appear along line-of-sight, or redshift increases, the radiation from quasars can be

scattered: “Lya Forest”.
Ao = 1216A
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A Sidenote - Gunn-Peterson Trough

« Notice: “ Lya Forest” has discrete absorptions since it is not uniform along line-of-sight.
« Assume we have a uniform and optically-thick HI gas in IGM.

Just on the left of A\, = 1216A, the forest should turn into a continued absorption (close to zero) dip.
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A Sidenote - Quasars’ Spectra Around 2z ~ 6
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Fig. 1. — Spectra of our sample of 19 SDSS quasars at 5.74 < z < 6.42. Twelve of the spectra were taken with Keck ESI, while the others were observed with the MMT
Red Channel and Kitt Peak 4 m MARS spectrographs. See Table 1 for detailed information. (Fan et al., 2006, AJ, 132, 117)



Takeaway

Gunn-Peterson limit provided the first evidence that the
universe was reionized by the formation of the first stars and
quasars.

Most of the 30 most distant quasars are known in 2000s, which
have led to the constraints of the epoch of reionization,
predicted 60 years ago by Gunn and Peterson.
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Appendix 1: UV Spectral Slope (Power Law)

The ultraviolet part of the emitted light contains information on various facets of the state of the galaxy. The

UV continuum between roughly 1250 A and 2600 A is commonly parametrized as a power law of the
Fy ~ \72.

This parametrization was first introduced by Calzetti et al. (1994) as a means of studying the effects of dust
extinction in galaxies, and has later been shown to trace the dust extinction at higher redshifts, as well as

being correlated with far-infrared dust emission (see e.g. Finkelstein et al. 2012, Meurer et al. 1999, Reddy
et al. 2012).
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