Archive-Mining the Galaxy Cluster Kinematic Lensing

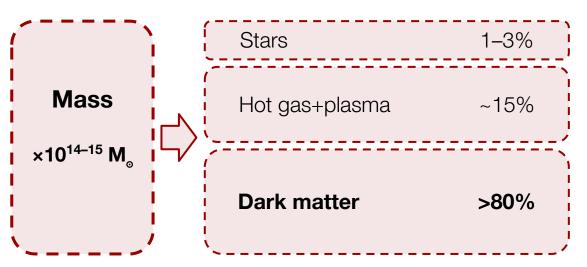
Master's Thesis Defense

Jiyun Di

Department of Physics and Astronomy
Stony Brook University

Thursday, May 16, 2024 09:00 New York Time

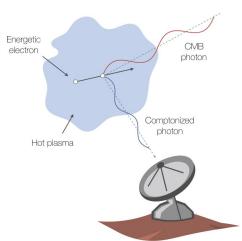
Archive-Mining the Galaxy Cluster Kinematic Lensing


Outlines

- 1. Introduction
- 2. Kinematic Lensing
- 3. Kinematic Lensing on "Weighing the Giants" Galaxy Clusters with Keck/DEIMOS

Cluster of Galaxies

- × 100–1000 galaxies
- Locates at nodes of large-scale structure webs
- Largest gravitationally-bounded structures in the Universe

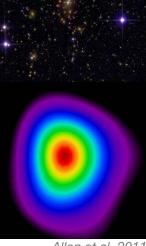

JWST/NIRCam image of galaxy cluster SMACS 0723 at z~0.3

https://www.nasa.gov/image-article/nasas-webb-delivers-deepest -infrared-image-of-universe-yet/

Cluster of Galaxies

Detection

- X-ray emission from intracluster medium (ICM)
- Optical over-densities of galaxies at similar z
- Millimeter-wave cosmic microwave background (CMB) distortion, according to Sunyaev-Zel'dovich effect.



Intracluster medium (X-ray)

Concentrated galaxies (optical)

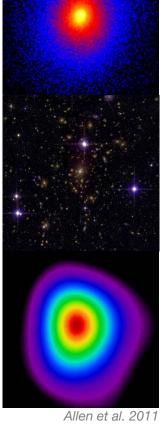
Mroczkowski et al. 2019

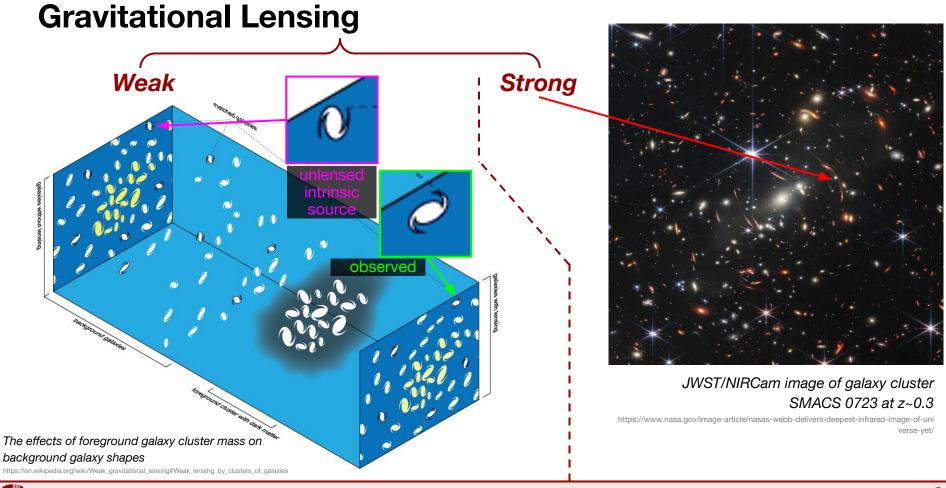
Allen et al. 2011

Cluster of Galaxies

Detection

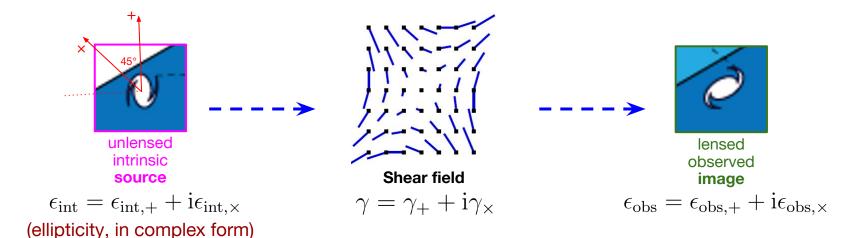
- X-ray emission from intracluster medium (ICM)
- Optical over-densities of galaxies at similar z
- Millimeter-wave cosmic microwave background (CMB) distortion, according to Sunyaev-Zel'dovich effect.


Cosmology


- Large masses
- Gravitational Lensing Tightly relates the dark matter
 (DM) and cluster mass

Intracluster medium (X-ray)

Concentrated galaxies (optical)



Weak Lensing

To measure weak shear

$$\gamma + \epsilon_{\mathrm{int}} = \epsilon_{\mathrm{obs}}$$

- + the component aligned with the major axis of the galaxy
- \times the component rotated by 45° relative to +.

Weak Lensing

To measure weak shear


Traditionally people assume a mean intrinsic shape = round

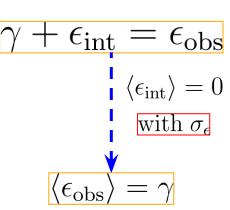
- → Take average of shears⟨y⟩
- → Weak-lensing cosmological constraints, shear-shear correlation, ...

Weak Lensing

To measure weak shear

Weak Lensing - Shape Noise

To measure weak shear


Traditionally people assume a mean intrinsic shape = round

- → Take average of shears ⟨γ⟩
- → Weak-lensing cosmological constraints, shear-shear correlation, ...

Shape noise can be as high as

$$\sigma_{\rm c} \sim 26\%$$
 (from LSST results),

This is the maximal potential of photometry, unluckily.

Weak Lensing - Shape Noise

Better to find:

- Intrinsic shape (ϵ_{int}) of source galaxy
- Resolve individual shears y

$$\gamma + \epsilon_{\mathrm{int}} = \epsilon_{\mathrm{obs}}$$

Other magics than normal photometric imaging?

- "Kinematic Lensing".

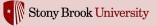
Section 2

Kinematic Lensing (KL)

An approach that utilizes both imaging galaxy shape information and kinematics from slit-spectroscopy for breaking the degeneracy between intrinsic shape and weak-lensing shear

(Huff et al. 2013)

Section 2

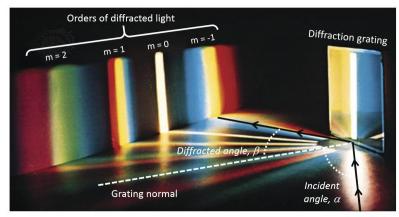

Kinematic Lensing (*KL*)

Galaxy **spectra** → Light-of-sight rotational velocity

Tully-Fisher scaling relation \rightarrow Rotational velocity

Galaxy inclination (intrinsic shape)

(Huff et al. 2013)


Galaxy Spectroscopy

- Spectra ←→ Kinematic information
- Absorption and emission features on spectrum
- With templates, we'll know
 - Redshift, Galaxy type, Chemical composition

Broad and zoomed 1D spectra Slit 38

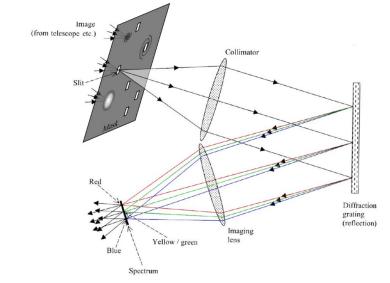
Thesis Figure

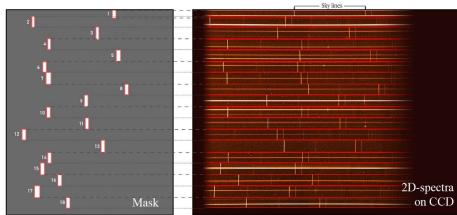
Polychromatic light diffracted from a grating

https://www.newport.com/n/diffraction-grating-physics

Galaxy Spectroscopy

- Spectra ←→ Kinematic information
- Absorption and emission features on spectrum
- With templates, we'll know
 - o Redshift, Galaxy type, Chemical composition


Spectrographs


- 1. Wide field slitless: for space-based
- **2. Long slit:** for nebulae
- 3. Multi-object (MOS)
- Mask + Slit slit is a key to recover one-dimensional kinematics of galaxy
- Fiber + IFU any position but fewer targets

Upper — Multi-object spectrograph (MOS).

Lower Left — A mask design.

Lower Right — 2D spectra horizontally diffracted.

Rotational velocity profile (Courteau 1997, Green et al. 2014)

Disk galaxies:

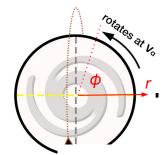
$$V(R) = \frac{2V_a}{\pi} \arctan\left(\frac{R}{R_t}\right)$$

• As $R \to \infty$, $V(\infty) = V_a$ (asymptotic velocity).

Rotational velocity profile (Courteau 1997, Green et al. 2014)

Disk galaxies:

$$V(R) = \frac{2V_a}{\pi} \arctan\left(\frac{R}{R_t}\right)$$


• As $R \to \infty$, $V(\infty) = V_a$ (asymptotic velocity).

$$\Delta v \quad (r, \phi) := V(R)$$

$$=\frac{2V_a}{\pi}$$

$$\arctan\left(\frac{r(\phi)}{r_t(\phi)}\right)$$

$$r = \text{projected } R$$

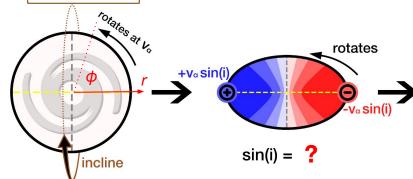
$$r_t = \text{projected } R_t$$

$$\bullet$$
 $V_a = V_a$

Rotational velocity profile (Courteau 1997, Green et al. 2014)

Disk galaxies:

$$V(R) = \frac{2V_a}{\pi} \arctan\left(\frac{R}{R_t}\right)$$


❖ As $R \to \infty$, $V(\infty) = V_a$ (asymptotic velocity).

Velocity Field $\Delta v(r, \varphi)$ of an inclined galaxy

$$\Delta v_{\log}(r,\phi) := V(R) \cos(\phi) \sin(i) = \frac{2V_a}{\pi} \cos(\phi) \sin(i) \arctan\left(\frac{r(\phi)}{r_t(\phi)}\right)$$

Light-of-sight component

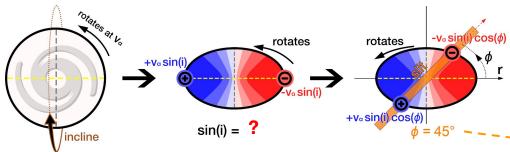
- r = projected R
- $r_t = \text{projected } R_t$
- $\dot{\mathbf{v}}_{a} = V_{a}$

Rotational velocity profile (Courteau 1997, Green et al. 2014)

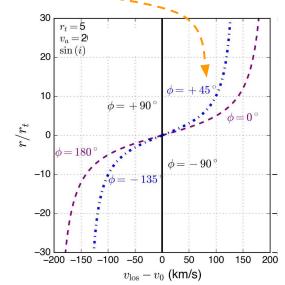
Disk galaxies:

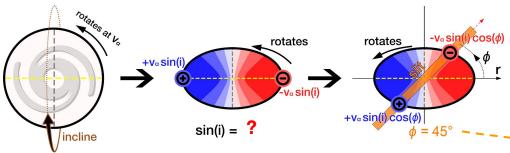
$$V(R) = \frac{2V_a}{\pi} \arctan\left(\frac{R}{R_t}\right)$$

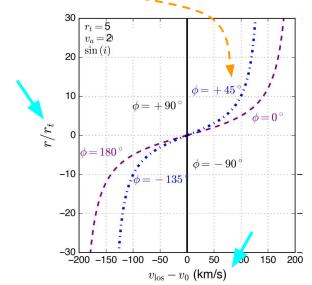
♦ As $R \to \infty$, $V(\infty) = V_a$ (asymptotic velocity).

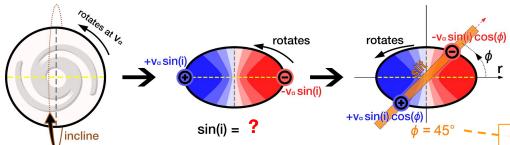

Velocity Field $\Delta v(r, \varphi)$ of an inclined galaxy

velocity i leid
$$\Delta v(r, \psi)$$
 of all inclined galaxy

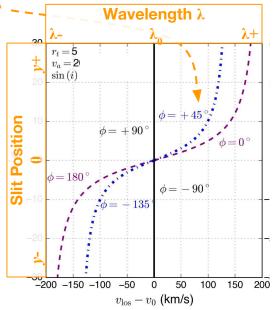

$$\Delta v_{\log}(r,\phi) := V(R) \cos(\phi) \sin(i) = \frac{2V_a}{\pi} \cos(\phi) \sin(i) \arctan\left(\frac{r(\phi)}{r_t(\phi)}\right)$$

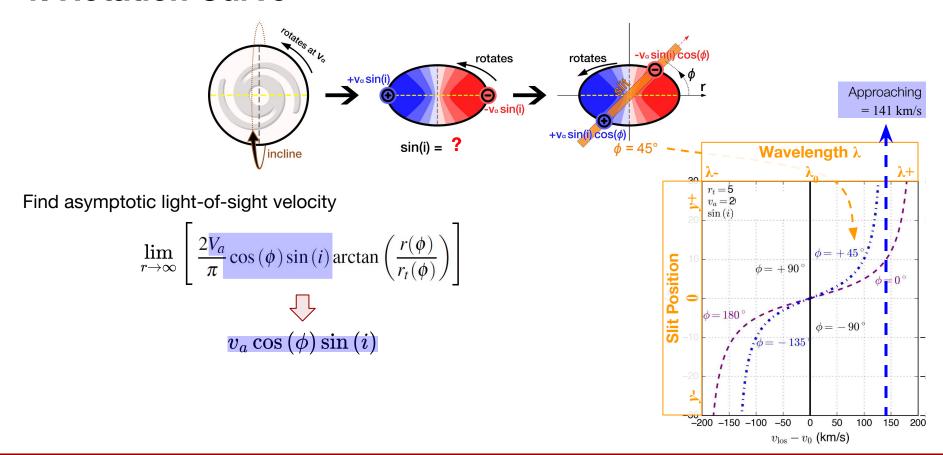

- r = projected R
- $r_t = \text{projected } R_t$
- $\dot{\mathbf{v}}_{a} = V_{a}$

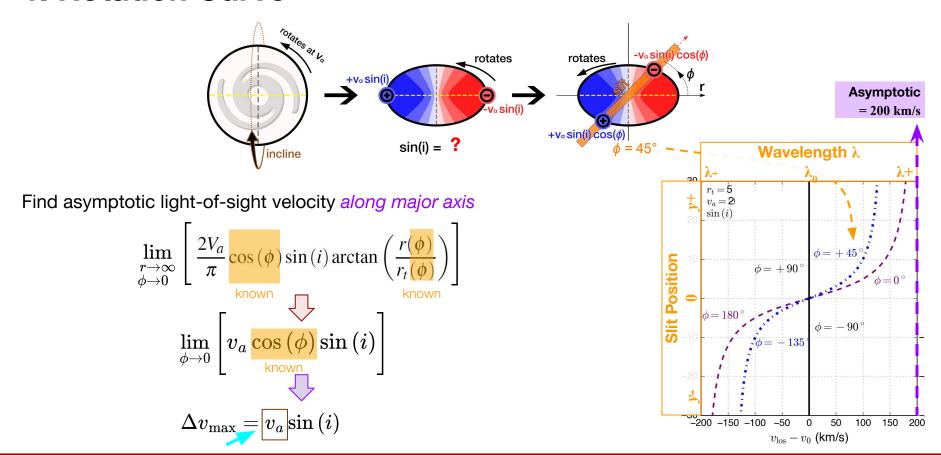

$$\Delta v_{\log}(r,\phi) := V(R)\cos(\phi)\sin(i) = \frac{2V_a}{\pi}\cos(\phi)\sin(i)\arctan\left(\frac{r(\phi)}{r_t(\phi)}\right)$$



$$\Delta v_{\log}(r,\phi) := V(R)\cos(\phi)\sin(i) = \frac{2V_a}{\pi}\cos(\phi)\sin(i)\arctan\left(\frac{r(\phi)}{r_t(\phi)}\right)$$


 $\Delta v(r, \varphi)$ with known $\varphi \rightarrow \textbf{Rotation Curve}$



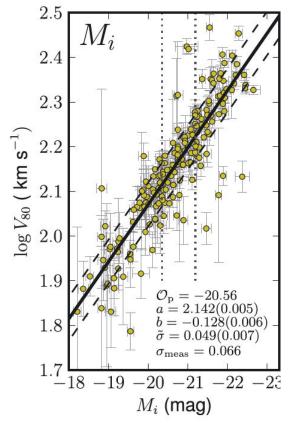


Rotation Curve is an observable emission line on spectrum (λ)

$$\Delta v = c \; \frac{\lambda - \lambda_0}{\lambda_0}$$

2. Maximum Rotational Speed $v_{\text{rot,TF}}$

Tully-Fisher scaling relation (Tully & Fisher 1977)


Disk galaxies:

$$\log (v_{\mathrm{rot,TF}}) = a(M_B - M_0) + b$$

Absolute magnitude

SDSS r-band galaxies: (Reyes et al. 2011)

$$\log\left(\frac{v_{\text{rot,TF}}}{139_{-2}^{+1} \text{ km s}^{-1}}\right) = \left(-0.130_{-0.007}^{+0.007} \frac{\log\left(\text{km s}^{-1}\right)}{\text{mag}}\right) (M_r + 20.375 \text{ mag})$$

ITFRs between rotation velocities V₈₀ and photometric M_i for the 189 galaxies.

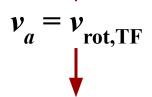
Reyes et al. (2011) Figure 20

Takeaways:

Maximum Rotational Speed of Tully-Fisher Relation

Asymptotic Velocity of Rotation Curve

$$\log (v_{
m rot,TF}) = a(M_B - M_0) + b$$
 $\Delta v_{
m max} = v_a \sin{(i)} = \lim_{r o \infty} \left[\Delta v(r,0) \right]$ $v_a = v_{
m rot,TF}$


Takeaways:

Maximum Rotational Speed of Tully-Fisher Relation

 $\log\left(v_{\text{rot,TF}}\right) = a(M_B - M_0) + b$

Asymptotic Velocity of Rotation Curve

$$\Delta v_{ ext{max}} = v_a \sin{(i)} = \lim_{r o \infty} \left[\Delta v(r,0)
ight]$$

Galaxy inclination

(intrinsic shape)

$$\sin\left(i\right) = \frac{\Delta v_{\text{max}}}{v_{\text{rot,TF}}}$$

KL improves 3 important aspects of traditional weak lensing systematics from $\sigma_{\epsilon} \sim$ 0.26 (LSST)

1. Reduced Shape Noise.

- Infer the velocity/frequency field of the source galaxy.
- Direct outcomes by using those spectrographs with IFUs.

KL improves 3 important aspects of traditional weak lensing systematics from $\sigma_{\epsilon} \sim$ 0.26 (LSST)

1. Reduced Shape Noise.

- Infer the velocity/frequency field of the source galaxy.
- Direct outcomes by using those spectrographs with IFUs.

2. Redshift Uncertainties.

- Spectroscopic redshifts' better precision, with error of Δspec-z ~ 0.001.
- Photometric redshifts (Δphoto-z ~ 0.05, Tanaka et al. 2018).

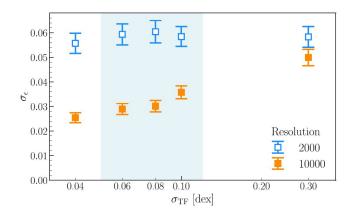
KL improves 3 important aspects of traditional weak lensing systematics from $\sigma_{\epsilon} \sim 0.26$ (LSST)

1. Reduced Shape Noise.

- o Infer the velocity/frequency field of the source galaxy.
- Direct outcomes by using those spectrographs with IFUs.

2. Redshift Uncertainties.

- Spectroscopic redshifts' better precision, with error of Δspec -z ~ 0.001 .
- \circ Photometric redshifts (Δ photo-z ~ 0.05 , Tanaka et al. 201/8).

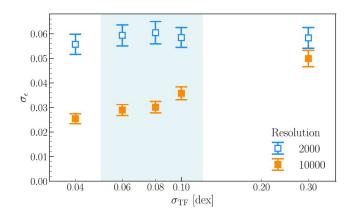

3. More Bright Galaxy Samples.

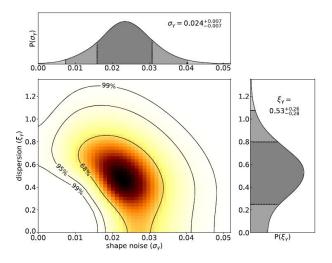
- Traditional lensing: must include low SNR galaxies (a.g., J+H band combined SNR>18, Eifler et al. 2021) to increase the sample size and statistical precision.
- However, KL: r-band SNR>50, emission-line-well-resolved, unblended (relatively isolated) galaxies, improving the photometric shape measurement for smaller biases (Pranjal et al. 2023, Xu et al. 2023).

KL Shape Noise: $\sigma_{\epsilon}^{\text{KL}} = 0.04$ from the recent mock observations (*Pranjal et al. 2023*)

KL shape noise $\sigma_{\epsilon}^{\text{KL}}$ = 0.04 depends on the following systematics:

- 1. Tully-Fisher Relation Intrinsic Scatter (σ_{TF})
 - R = 2000 resolving power + spectral SNR=30, an average of $\sigma_{\epsilon}^{\text{KL}} = 0.06$ (Pranjal et al. 2023)




1. Tully-Fisher Relation Intrinsic Scatter (σ_{TF})

• R = 2000 resolving power + spectral SNR=30, an average of $\sigma_{\epsilon}^{KL} = 0.06$ (Pranjal et al. 2023)

Importance of the velocity fields inferred by spectroscopy

- Gurri et al. (2020) galaxy-galaxy lensing systems; use the lens-source position relation to infer v_a
- Gurri et al. (2021) and DiGiorgio et al. (2021) effective shape noise σ_{ϵ} = **0.017–0.031**
- Wittman & Self (2021) involve Tully-Fisher relation; shape noise of σ_{ϵ} ~ 0.04

Section 3

Kinematic Lensing on

"Weighing the Giants" Galaxy Clusters

with Keck/DEIMOS

Mining in the archived slit-spectroscopic data

Target Selection

"Weighing the Giants" project galaxy cluster sample

(51 clusters; von der Linden et al. 2014a,b, Kelly et al. 2014, and Applegate et al. 2014)

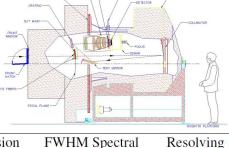
"Weighing the Giants" (WtG) clusters

- calibrated with robust weak-lensing masses from X-ray observations
- span an intermediate redshift range of 0.15 < z_{cl} < 0.7.
 - (1) Photometric imaging observed with Subaru/SuprimeCam and CFHT/MegaPrime;
 - (2) Maps of the total mass distribution measured from weak lensing;
 - (3) Robust weak-lensing shape measurement at hand;
 - (4) Central galaxy determination; and
 - (5) Photometric redshifts.

Target Selection

"Weighing the Giants" project galaxy cluster sample

(51 clusters; von der Linden et al. 2014a,b, Kelly et al. 2014, and Applegate et al. 2014)


Keck/DEIMOS instrument

(Faber et al. 2003)

Keck/DEIMOS (DEep Imaging Multi-Object Spectrograph; Faber et al. 2003)

- Visible-wavelength, faint-object, multi-slit imaging spectrograph of Keck II telescope
- Wavelength range of 4100–11000 Å
 - Ca H&Kλλ3933,3968 doublet (absorption)
 - [O II]λλ3727,3729 doublet
 - [S II]λλ6716,6731 doublet,
 [O III]λλ4959,5007 doublet,
 N II λλ6548,6584 doublet, &
 Ηγ λ4340, Ηβ λ4861, Ηα λ6563.

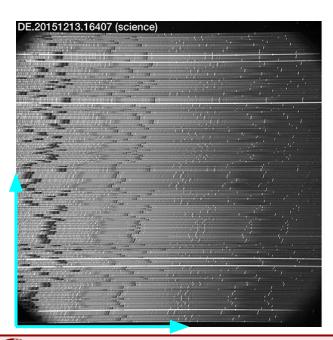
Spectroscopic	Blaze	Dispersion	FWHM Spectral	Resolving
Grating	Wavelength	Scale	Resolution (1" slit)	Power
(lines/mm)	(Å)	(Å/pixel)	Δλ (Å)	R
600	7500	0.65	4.7	1606
1200	7500	0.33	1.5-2.1	3571-5000

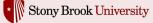
This thesis

(6 clusters + 17 masks)

"Weighing the Giants" project galaxy cluster sample

(51 clusters; von der Linden et al. 2014a,b, Kelly et al. 2014, and Applegate et al. 2014)

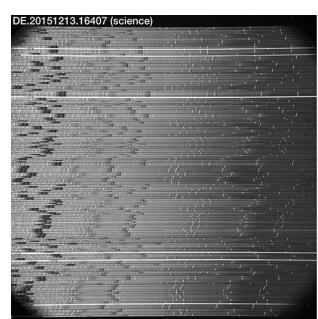

Keck/DEIMOS instrument (Faber et al. 2003)


	Cluster	RA (deg)	Dec. (deg)	z _{Cl}	M10	Mask	Grating	Date	Set
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	A2552	347.88818	3.63514	0.302	M	25521B	1200G	2015-12-13	A
2	A611	120.23674	36.05709	0.288	-	sna611	600ZD	2012-10-15	E
3	A1758N	203.18111	50.54398	0.279	-	ejc	600ZD	2018-07-16	I
4	A1758N	203.18111	50.54398	0.279	_	ejc1	600ZD	2018-07-17	C
5	A1758N	203.18111	50.54398	0.279	-	ejc2	600ZD	2018-07-18	D
6	M1115	168.96617	1.49861	0.355	M	sn1115	600ZD	2012-02-26	В
7	M1115	168.96617	1.49861	0.355	M	1115m1	600ZD	2014-02-25	A
8	M1115	168.96617	1.49861	0.355	M	jc9	600ZD	2015-06-16	В
9	A2261	260.61244	32.13275	0.224	В	a2261aB	1200G	2014-07-01	A
10	A2261	260.61244	32.13275	0.224	В	a2261b	1200G	2014-07-01	В
11	A2261	260.61244	32.13275	0.224	В	a2261c	1200G	2014-07-01	C
12	A2261	260.61244	32.13275	0.224	В	a2261d	1200G	2015-06-18	A
13	A2261	260.61244	32.13275	0.224	В	a2261c	1200G	2015-06-18	В
14	A2261	260.61244	32.13275	0.224	В	a2261b	1200G	2015-06-18	C
15	A2261	260.61244	32.13275	0.224	В	a2261a	1200G	2015-06-18	D
16	A370	39.97186	-1.57718	0.375	-	A37017B1	1200G	2017-09-28	A
17	A370	39.97186	-1.57718	0.375	-	A37017B2	1200G	2017-09-28	В

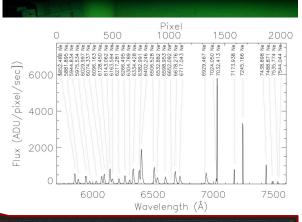
Data Reduction

Raw and Calibration Data

CCD 8192×8192 pixel² science image of the cluster A2552's spectra

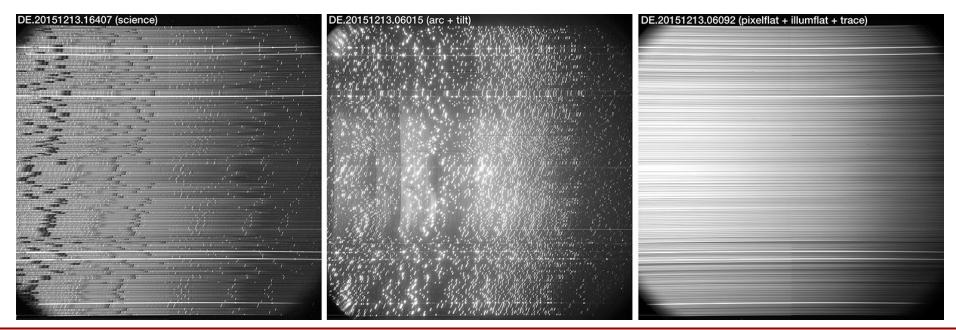


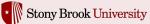
Data Reduction


Raw and Calibration Data

"Arc image" maps the pixel position to wavelengths → Identify wavelength at each

x-pixel (Right plots: 10 Ne arc lamp flux-wavelength plot from Keck/Iris)

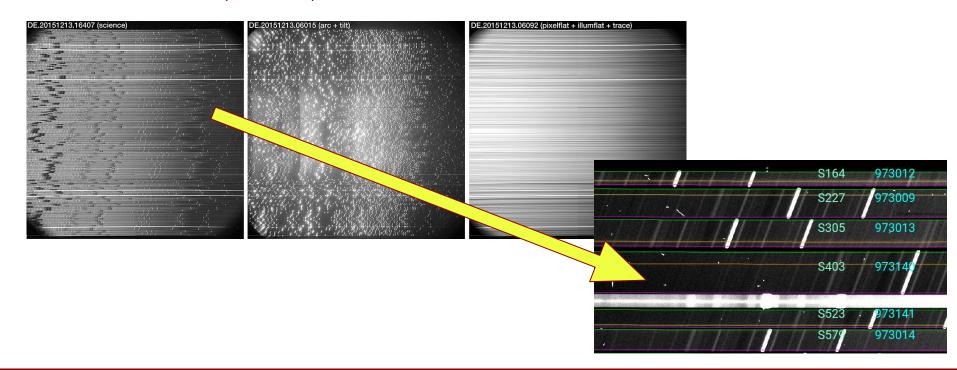



Data Reduction

Raw and Calibration Data

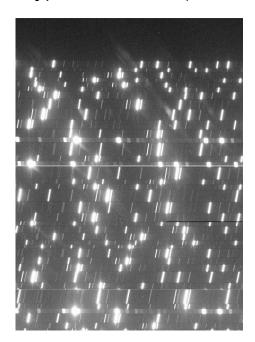
"Trace image" also traces the dispersion directions of slits.

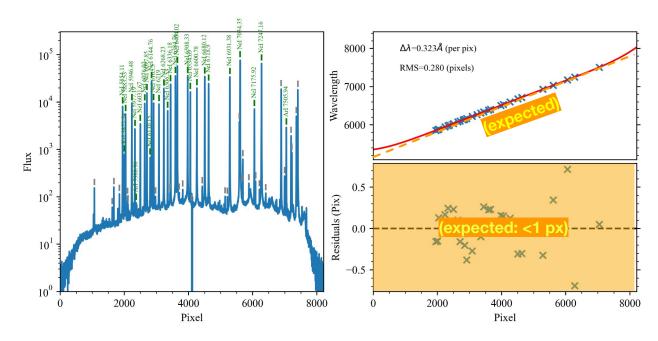
They are edges of slits.



Slit Identification

Which slit ←→ which 2D spectrum strip

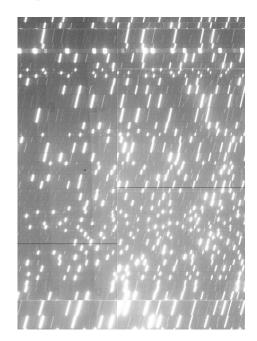


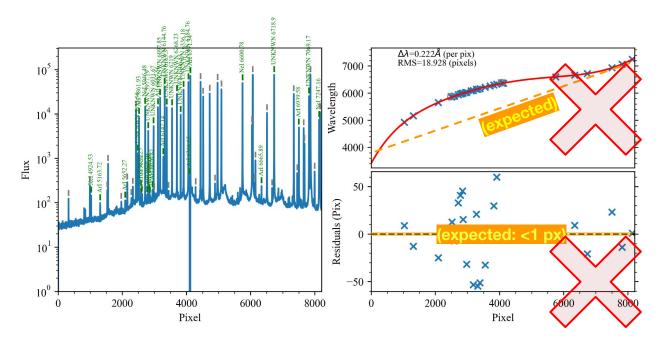


Wavelength Calibration

PypeIt identifies arc lines.

PypeIt determines pixel-wavelength mapping and gives analytic polynomial fit.

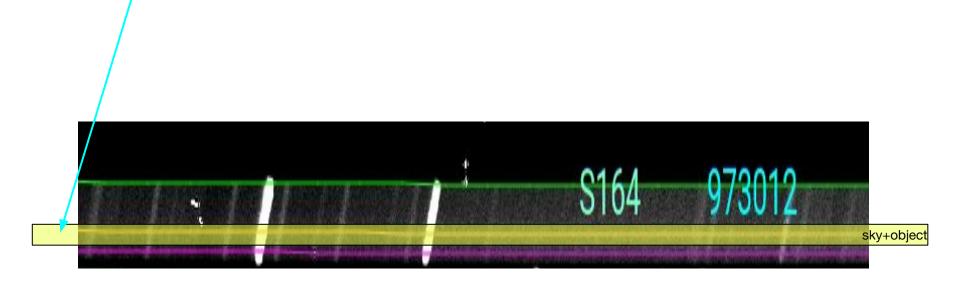




Wavelength Calibration

PypeIt identifies arc lines.

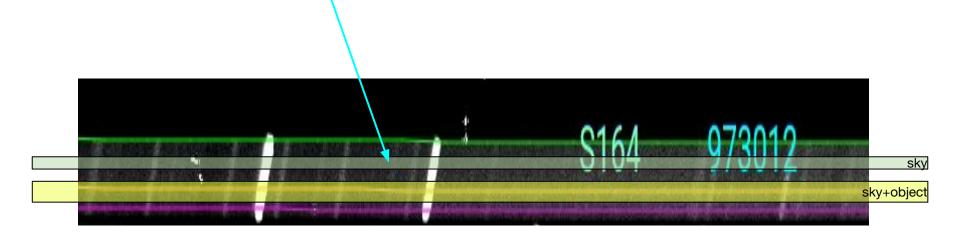
PypeIt determines pixel-wavelength mapping and gives analytic polynomial fit.



Object Finding and Sky Line Subtraction

Sky lines are a series of lines illuminated by atmospheric airflow

2D object model (continuum-like) — Pixels with higher SNRs (e.g., SNR>5σ)

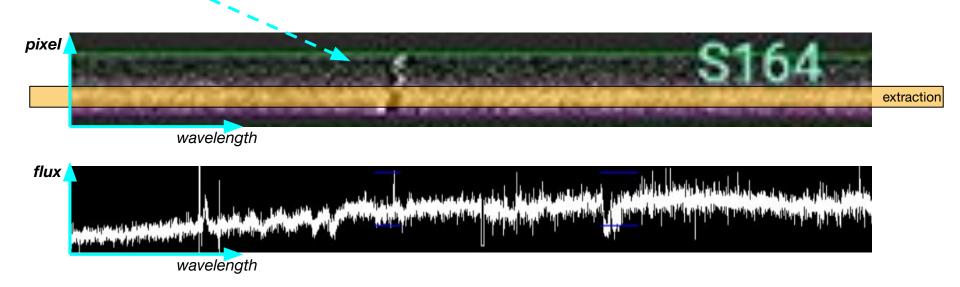


Object Finding and Sky Line Subtraction

Sky lines are a series of lines illuminated by atmospheric airflow

- 2D object model (continuum-like) Pixels with higher SNRs (e.g., SNR>50)
- 2D sky model parallel pixels next to 2D object
- Science = object + sky

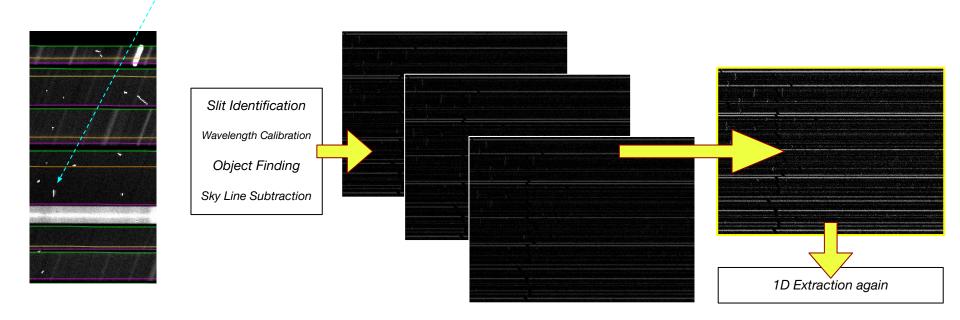
Sky Line Subtraction



1D spectrum

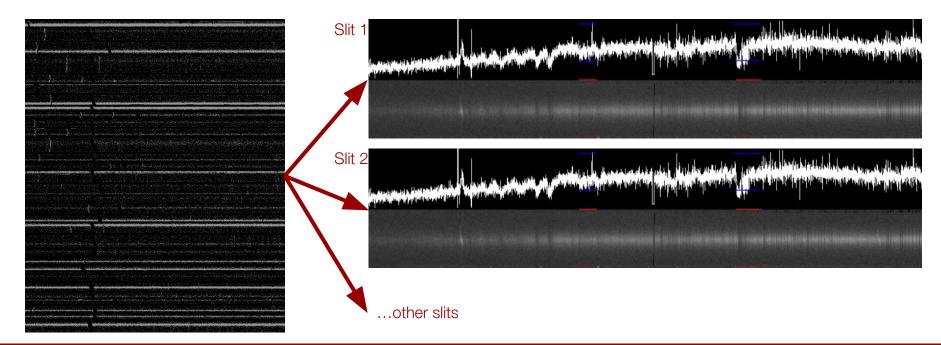
Define an extraction width.

The flux of 2D object is integrated into 1D spectrum model.



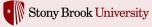
Co-addition

Remove cosmic rays


Co-add multiple frames to the weighted mean (an average image using uniform weighting).

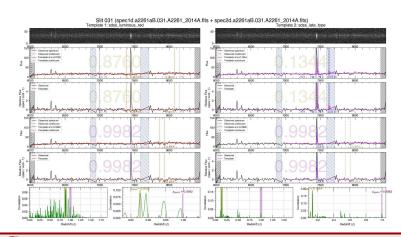
Spectroscopic Redshift

1. Spectrum Cutting-off by Slit — pypeittospecpro.py | 1338 spectra | 1125 targets

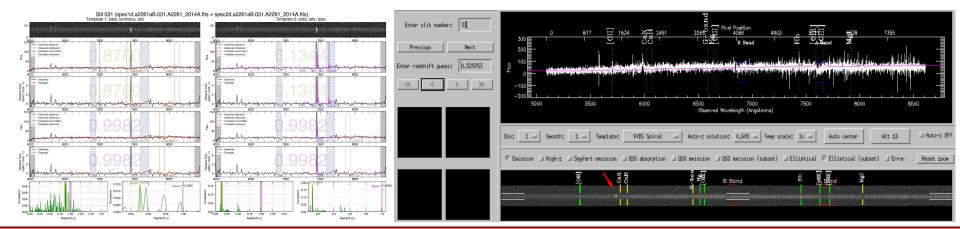

Spectroscopic Redshift

- 1. Spectrum Cutting-off by Slit
- 2. Templates

Table 2.3: Spectral Templates For Cross-Correlation


		Dispersion	Spectral	Resolving	
Template	Source	Scale	Resolution	Power	
		(Å/pixel)	$\Delta\lambda$ (Å)	R	
LBG Shapley	Lyman break galaxyo	1.0	8-12	417-625	
SDSS QSO	Broad-line quasar△	1.0	2	2000	
SDSS LoBAL	Low-ionization BAL quasar†	0.7	1.8-5.1	2000	
SDSS HiBAL	High-ionization BAL quasar†	0.7	1.8-5.1	2000	
SDSS Luminous Red	Luminous red galaxy*	1.6	1.8 - 5.1	2000	
SDSS Early Type	Early-type galaxy*	2.1	1.8 - 5.1	2000	
SDSS Low Emission	Low-emission-peak galaxy*	2.1	1.8 - 5.1	2000	
SDSS Normal Emission	Normal-emission-peak galaxy*	2.1	1.8 - 5.1	2000	
SDSS High Emission	High-emission-peak galaxy*	2.1	1.8 - 5.1	2000	
SDSS Late Type	Late-type galaxy*	2.1	1.8 - 5.1	2000	
Red galaxy	PEGASE passive galaxy	2.0	1.4		
Green galaxy	PEGASE early spiral	2.0	1.4		
Blue galaxy	PEGASE spiral/starburst	2.0	1.4		
A0 star	A0 stellar templates‡	5	5	500	
F0 star	F0 stellar templates‡	5	5	500	
G0 star	G0 stellar templates‡	5	5	500	
K0 star	K0 stellar templates‡	5	5	500	
M0 star	M0 stellar templates‡	5	5	500	
M6 star	M6 stellar templates‡	5	5	500	

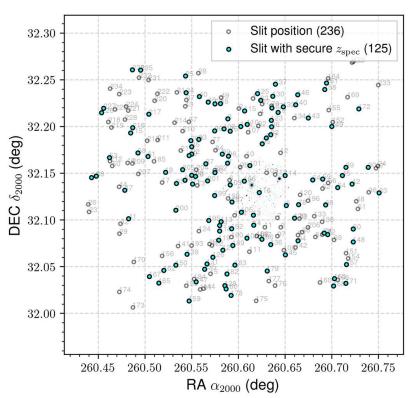
NOTE — Sources: ○ Shapley et al. (2003), △ Schneider et al. (2010), † Reichard et al. (2003),

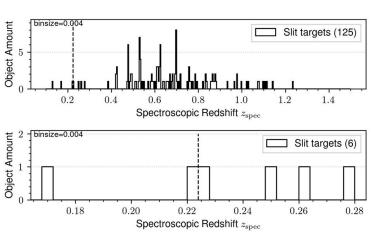


[‡] Pickles (1998), and *SDSS DR2 (Abazajian et al. 2004) spectral templates: https://classic.sdss.org/dr5/algorithms/spectemplates/index.php

- 1. Spectrum Cutting-off by Slit pypeittospecpro.py | 1338 spectra | 1125 targets
- 2. Templates
- 3. Tools
 - FIREFLY (Fast Initial REdshift Fitting of cLuster galaxY) for rapid fittings to guess the approximate redshift solutions with probability distribution.

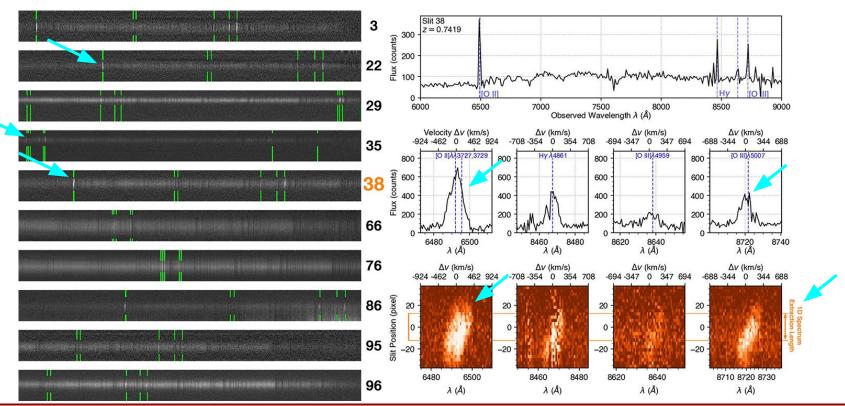
- 1. Spectrum Cutting-off by Slit pypeittospecpro.py | 1338 spectra | 1125 targets
- 2. Templates
- 3. Tools
 - FIREFLY (Fast Initial REdshift Fitting of cLuster galaxY) for rapid fittings to guess the approximate redshift solutions with probability distribution.
 - IDL/SpecPro (Masters & Capak 2011) user visual inspections in GUI + manual redshift adjustments to fit with the template best visually.


- 1. Spectrum Cutting-off by Slit pypeittospecpro.py | 1338 spectra | 1125 targets
- 2. Templates
- 3. Tools FIREFLY + IDL/SpecPro
- 4. Secure Redshifts
 - "confidence" flags indicate the reliability of spec-z
 - i. **3 = secure** (two or more lines are identified and outcome one redshift)
 - ii. **2 = likely** (one line is identified and outcomes a redshift)
 - iii. 1 = no determination

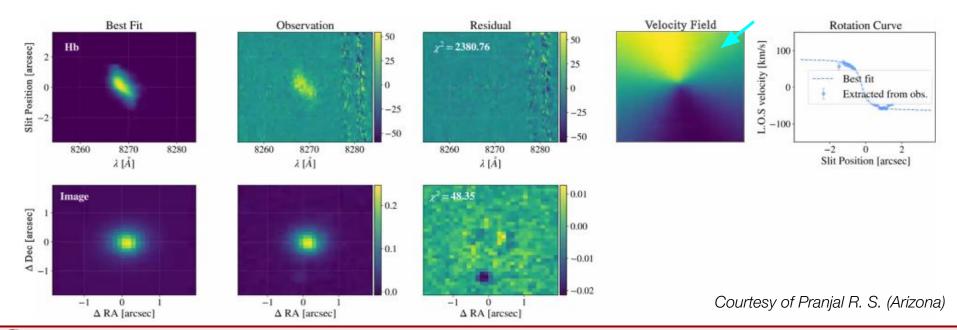

- 1. Spectrum Cutting-off by Slit pypeittospecpro.py | 1338 spectra | 1125 targets
- 2. Templates
- 3. Tools FIREFLY + IDL/SpecPro
- 4. Secure Redshifts
 - "confidence" flags indicate the reliability of spec-z (3 = secure, 2 = likely, 1 = no determination)
 - o confidence-flag distribution of 60, 1, and 39% for confidence = 1, 2, and 3

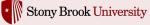
- 1. Spectrum Cutting-off by Slit pypeittospecpro.py | 1338 spectra | 1125 targets
- 2. Templates
- 3. Tools FIREFLY + IDL/SpecPro
- 4. Secure Redshifts
 - "confidence" flags indicate the reliability of spec-z (3 = secure, 2 = likely, 1 = no determination)
 - o confidence-flag distribution of 60, 1, and 39% for confidence = 1, 2, and 3
 - 1125 slit targets produce 451 redshifts of confidence≥2
 - o 8 redshifts with confidence = 3 are for stars
 - 443 redshifts with the <u>confidence ≥ 2</u> for non-stellar objects are defined as <u>secure redshifts</u>

-	Cluster	RA (deg)	Dec. (deg)	^z Cl	M10	Mask	Grating	Date	Set	N _{slits}	N_z	N_b	N_c	N_{bc}
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
1	A2552	347.88818	3.63514	0.302	M	25521B	1200G	2015-12-13	A	143	72	9	7	2
2	A611	120.23674	36.05709	0.288	-	sna611	600ZD	2012-10-15	E	48	16	3	2	1
3	A1758N	203.18111	50.54398	0.279	9-0	ejc	600ZD	2018-07-16	I	76	22	0	0	0
4	A1758N	203.18111	50.54398	0.279	_	ejc1	600ZD	2018-07-17	C	63	22	1	0	0
5	A1758N	203.18111	50.54398	0.279	-	ejc2	600ZD	2018-07-18	D	39	17	2	4	0
6	M1115	168.96617	1.49861	0.355	M	sn1115	600ZD	2012-02-26	В	120	60	37	15	11
7	M1115	168.96617	1.49861	0.355	M	1115m1	600ZD	2014-02-25	A	147	76	15	20	3
8	M1115	168.96617	1.49861	0.355	M	jc9	600ZD	2015-06-16	В	31	11	0	4	0
9	A2261	260.61244	32.13275	0.224	В	a2261aB	1200G	2014-07-01	A	63	41	37	28	24
10	A2261	260.61244	32.13275	0.224	В	a2261b	1200G	2014-07-01	В	66	31	31	25	25
11	A2261	260.61244	32.13275	0.224	В	a2261c	1200G	2014-07-01	C	62	27	26	22	21
12	A2261	260.61244	32.13275	0.224	В	a2261d	1200G	2015-06-18	A	65	25	25	13	13
13	A2261	260.61244	32.13275	0.224	В	a2261c	1200G	2015-06-18	В	62	30	29	22	20
14	A2261	260.61244	32.13275	0.224	В	a2261b	1200G	2015-06-18	C	64	30	28	20	17
15	A2261	260.61244	32.13275	0.224	В	a2261a	1200G	2015-06-18	D	65	32	29	26	23
16	A370	39.97186	-1.57718	0.375	-	A37017B1	1200G	2017-09-28	A	121	14	1	4	1
17	A370	39.97186	-1.57718	0.375	s - 2	A37017B2	1200G	2017-09-28	В	103	11	4	7	1
									Total	1338	451	277	219	162
	Non-duplicate and Non-Stellar Objects Total						1125	443	187	149	105			


Spectroscopic Redshift

58

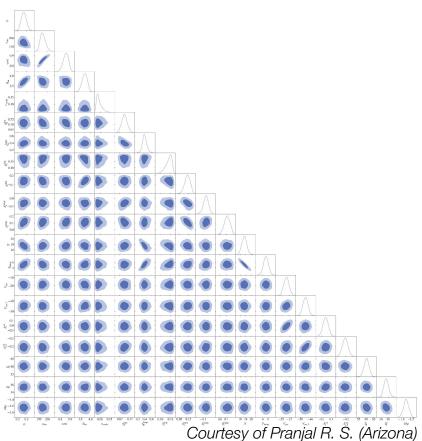

Rotation Curves and Velocity Fields



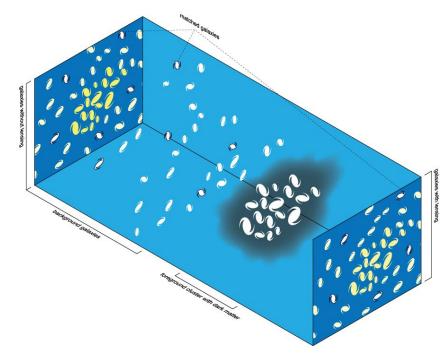
Rotation Curves and Velocity Fields

KL measurement pipeline developed by Pranjal et al. (2023) and fit with the fast-forward model of 20 free parameters:

- γ_t perpendicular shear component relative to the cluster center
- $ightharpoonup \mathbf{v}_{\mathrm{circ}}$ Maximum rotational speed constrained by Tully-Fisher
- ightharpoonup v $_{
 m sys}$ Galaxy systemic velocity
- > cos(i) Inclination
- ➤ ..

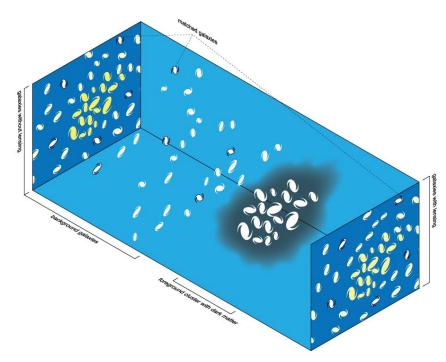


Rotation Curves and Velocity Fields


KL measurement pipeline developed by Pranjal et al. (2023) and fit with the fast-forward model of 20 free parameters:

Rotation Curves and Velocity Fields

- Background: **z** > **z**_{cl}+**0.1**
- 149 rotation curves
- **105** rotation curves are background source galaxies


The effects of foreground galaxy cluster mass on background galaxy shapes

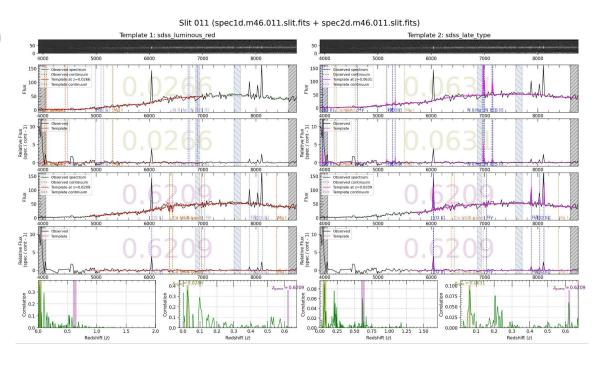
https://en.wikipedia.org/wiki/Weak_gravitational_lensing#Weak_lensing_by_clusters_of_galaxies

Rotation Curves and Velocity Fields

- Background: $z > z_{cl} + 0.1$
- 149 rotation curves
- 105 rotation curves are background source galaxies
- Rotation curves whose redshifts z ≤ z_{ci}-0.1 can be a key sample for training fittings
 - The galaxy is not weak-lensed
 - From photometry, it is exactly the intrinsic shape

The effects of foreground galaxy cluster mass on background galaxy shapes

https://en.wikipedia.org/wiki/Weak_gravitational_lensing#Weak_lensing_by_clusters_of_galaxies

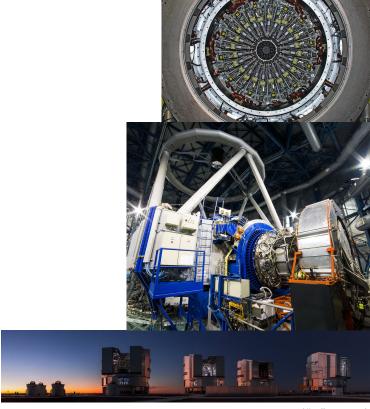


Redshift Pipeline

The remaining 14 clusters and 40 masks in the cluster sample

Redshift Pipeline

- The remaining 14 clusters and 40 masks in the cluster sample
- Improve FIREFLY so that most spectroscopic redshifts can be assessed automatically
 - Manually-inspected confidence flag → cross-correlation parameter
 - Identify the significant emission lines such as [O II], [O III], and Hβ

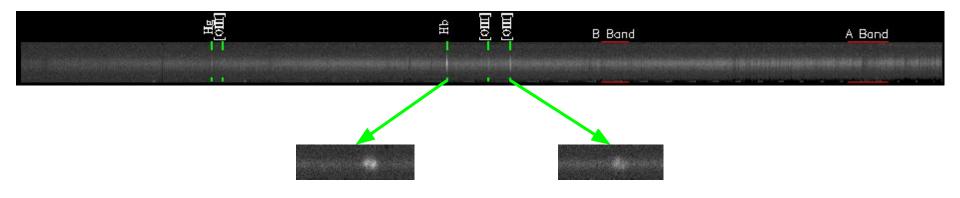


Shear Measurement

- Rotation curves give the magnitude and direction of the perpendicular shear component (γ_t).
- Cross-check with the previous and current generation weak lensing surveys.
- Cluster projected weak lensing mass map.

Future MOS Instruments

- VLT/KMOS (Sharples et al. 2013)
 - An integral-field MOS with 14×14 fibers
 - Wavelength-calibration-free data
 - Data cubes of x-pixels, y-pixels, and spectroscopic
 λ-pixels (spaxels)
 - Directly mapping the velocity fields
 - Up to 24 targets at one observation
- 9 clusters are with VLT/KMOS data
- VLT/KMOS will show its potential in future KL analysis



Discoveries of Active Galactic Nucleus

Emission line has two distinct bright dots separated for a few Å on the faint continuum

A2552 Slit 68: an irregular spiral galaxy (NASA/IPAC Extragalactic Database)

Conclusions

We reduced slit-spectroscopic data, discussed WL ideas, and showed rotation curves that can be fitted with resultant shears.

- ➤ A total of **443 secure spectroscopic redshifts** are measured by 1125 slits in 6 clusters.
- Potation curves can solve for intrinsic shapes of galaxies, without regarding if the galaxy is weak-lensed by a cluster. They are also **valuable databases** for researchers who test and train for the rotation curve fitting by their models and algorithms.
- We find 149 rotation curves that can solve for the weak lensing shear and reduce shape noise. They are also valuable databases for future KL studies.
- This paper utilizes and develops multiple pipelines by combining automatic template fittings and redshift measurements.
- Spectroscopic redshifts can be further analyzed for dynamical masses and cross-checking with weak-lensing masses.

References

- **Allen, S. W.,** Evrard, A. E. & Mantz, A. B. **(2011)**, Annual Review of A&A 49(1), 409–470.
 - https://doi.org/10.1146/annurev-astro-081710-102514
- **Applegate, D. E.,** von der Linden, A., Kelly, P. L., et al. **(2014)**, MNRAS 439(1), 48–72. https://doi.org/10.1093/mnras/stt2129
- Courteau, S. (1997), AJ 114, 2402. https://ui.adsabs.harvard.edu/abs/1997AJ....114.2402C
- **Di, J.,** Egami, E., Wong, K. C., et al. **(2023)**, arXiv e-prints p. arXiv:2312.02140.
 - https://ui.adsabs.harvard.edu/abs/2023arXiv231202140D
- **DiGiorgio, B.,** Bundy, K., Westfall, K. B., et al. **(2021)**, ApJ 922(2), 116. https://doi.org/10.3847/1538-4357/ac2572
- **Eifler, T.,** Miyatake, H., Krause, E., et al. **(2021)**, MNRAS 507(2), 1746–1761. https://doi.org/10.1093/mnras/stab1762
- Faber, S. M., Phillips, A. C., Kibrick, R. I., et al. (2003), Vol. 4841 of Society of Photo-Optical Instrumentation Engineers (SPIE)

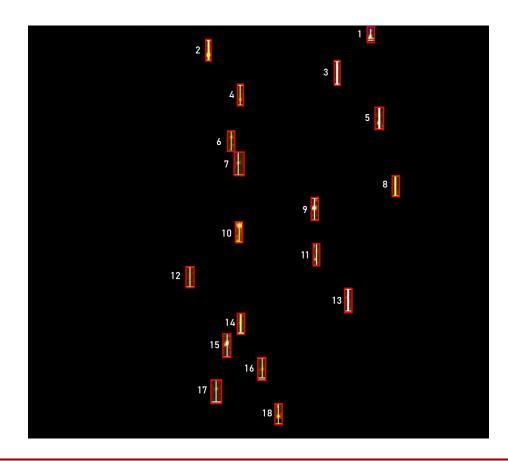
 Conference Series, pp. 1657–1669.

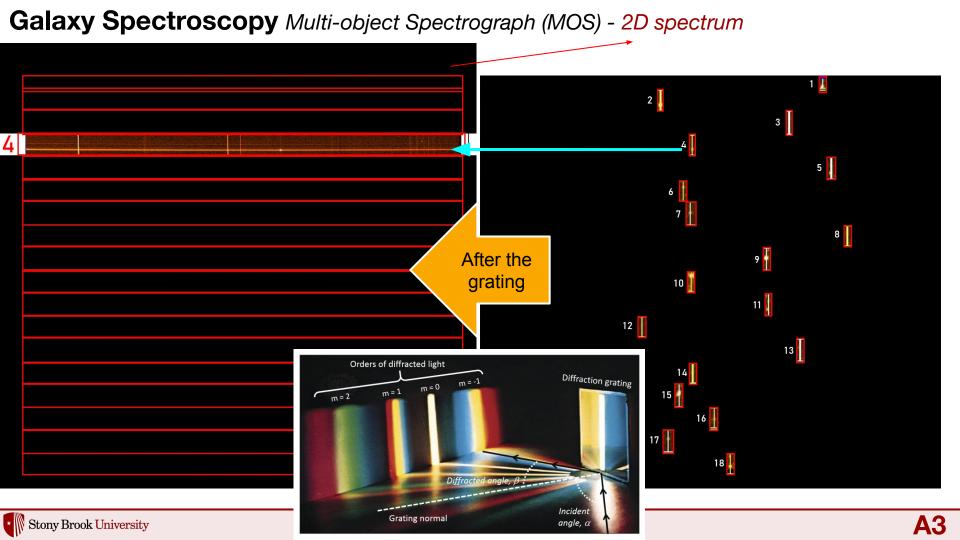
 https://doi.org/10.1117/12.460346
- **Green, A. W.,** Glazebrook, K., McGregor, P. J., et al. **(2014)**, MNRAS 437(2), 1070–1095. https://doi.org/10.1093/mnras/stt1882
- **Gurri, P.,** Taylor, E. N. & Fluke, C. J. **(2020)**, MNRAS 499(4), 4591–4604. https://doi.org/10.1093/mnras/staa2893
- **Gurri, P.,** Taylor, E. N. & Fluke, C. J. **(2021)**, MNRAS 502(4), 5612–5621. https://doi.org/10.1093/mnras/stab423
- **Huff, E. M.,** Krause, E., Eifler, T., et al. **(2013)**, arXiv e-prints p. arXiv:1311.1489. https://doi.org/10.48550/arXiv.1311.1489
- **Kelly, P. L.,** von der Linden, A., Applegate, D. E., et al. **(2014)**, MNRAS 439(1), 28–47. https://doi.org/10.1093/mnras/stt1946

- **Mantz, A.,** Allen, S. W., Rapetti, D., et al. **(2010a)**, MNRAS 406(3), 1759–1772. https://doi.org/10.1111/j.1365-2966.2010.16992.x
- **Mantz, A.,** Allen, S. W., Ebeling, H., et al. **(2010b)**, MNRAS 406(3), 1773–1795. https://doi.org/10.1111/j.1365-2966.2010.16993.x
- **Masters, D.** & Capak, P. **(2011)**, PASP 123(903), 638–644. http://iopscience.iop.org/article/10.1086/660023
- **Mroczkowski, T.,** Nagai, D., Basu, K., et al. **(2019)**, Space Science Reviews 215(1), 17. https://doi.org/10.1007/s11214-019-0581-2
- **Pranjal, R. S.,** Krause, E., Huang, H.-J., et al. **(2023)**, MNRAS 524(3), 3324–3334. https://doi.org/10.1093/mnras/stad2014
- **Reyes, R.,** Mandelbaum, R., Gunn, J. E., et al. **(2011)**, MNRAS 417(3), 2347–2386. https://doi.org/10.1111/j.1365-2966.2011.19415.x
- **Sharples, R.,** Bender, R., Agudo Berbel, A., et al. **(2013)**, The Messenger 151, 21–23.
 - https://ui.adsabs.harvard.edu/abs/2013Msngr.151...21S
- **Tanaka, M.,** Coupon, J., Hsieh, B.-C., et al. **(2018)**, PASJ 70, S9. https://doi.org/10.1093/pasj/psx077
- **Tully, R. B.** & Fisher, J. R. **(1977)**, A&A 54, 661–673. https://ui.adsabs.harvard.edu/abs/1977A&A....54..661T
- von der Linden, A., Allen, M. T., Applegate, D. E., et al. (2014a), MNRAS 439(1), 2–27. https://doi.org/10.1093/mnras/stt1945
- von der Linden, A., Mantz, A., Allen, S. W., et al. (2014b), MNRAS 443(3), 1973–1978. https://doi.org/10.1093/mnras/stu1423
- **Wittman, D.** & Self, M. **(2021)**, ApJ 908(1), 34. https://doi.org/10.3847/1538-4357/abd548
- Xu, J., Eifler, T., Huff, E., et al. (2023), MNRAS 519(2), 2535–2551. https://doi.org/10.1093/mnras/stac3685

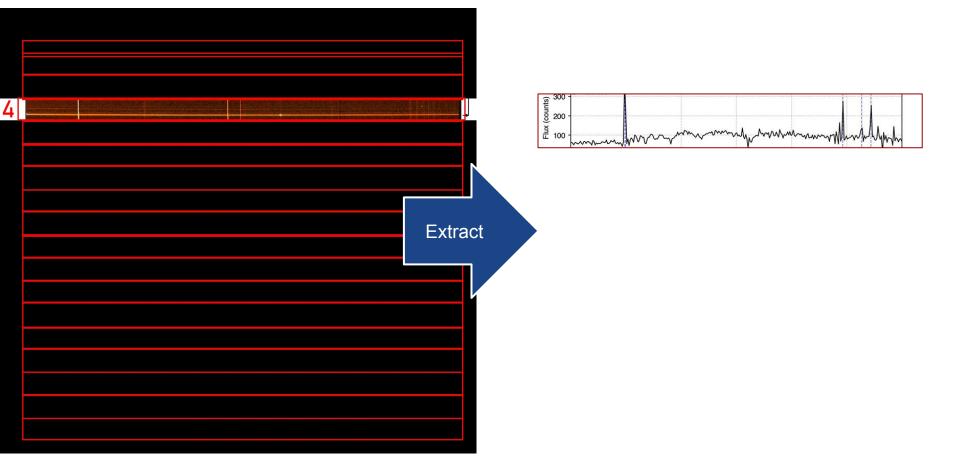
Spectroscopy Team of Anja's Group

Anja von der Linden, associate professor, Physics & Astronomy
 Jiyun Di, Joined Sep 2022, 2nd-year MA student
 Alden Beck, Joined Nov 2022, Nevis Labs, Columbia U
 Aaron Burke, Joined Jan 2023, 1st-year MA student

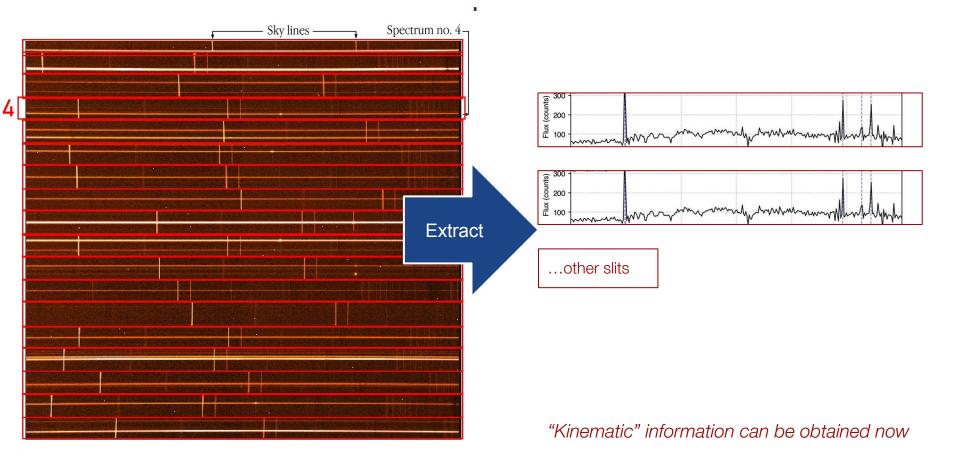

Appendix



Galaxy Spectroscopy Multi-object Spectrograph (MOS)



Galaxy Spectroscopy Multi-object Spectrograph (MOS)



Galaxy Spectroscopy Multi-object Spectrograph (MOS) - 2D spectrum

Galaxy Spectroscopy Multi-object Spectrograph (MOS) - 2D & 1D spectra

